[能源与动力工程] 基于改进模拟退火遗传算法的梯级水电站长期优化调度

131 0
2025-1-22 10:30 | 查看全部 阅读模式

基于改进模拟退火遗传算法的梯级水电站长期优化调度
摘要:在使用传统优化方法处理梯级电站数量庞大的长期优化调度时会出现“维数灾”及寻优效果差等问题。研究工作利用遗传算法进行计算,并对其进行了利于计算的改进,将自适应的控制理论加入交叉和变异算子,让其根据适应度的值自动改变,生成初始群体时使用混沌理论,并引入模拟退火方法,将两者的优点结合起来,生成了改进模拟退火遗传算法,提升了全局寻优能力和局部搜索能力,避免了算法陷入局部最优解。将改进后的算法程序应用于建立的模型中,通过与常规遗传算法的比较与分析,结果表明改进模拟退火遗传算法全局搜索能力强、求解效果好,为解决梯级水电站长期优化调度提供了新方法。

Abstract:Conventional optimization methods have ‘dimension disaster’ problems and poor search efficiencies in solving the long-term scheduling optimization problem of large-scale cascade hydropower stations. In order to achieve better results, the genetic algorithm has been improved in this study. The adaptive control theory is applied to the crossover and mutation operators, such that they can be automatically changed according to the fitness value. Chaos theory is used to generate the initial population, and the simulated annealing method is also introduced. An improved simulated annealing genetic algorithm is proposed by combining the advantages of these two algorithms, which can enhance global optimization capabilities and local search capabilities, and reduce the probability of stuck on local optima. The improved algorithm is then applied to an established model. Through compared with the conventional genetic algorithms, the results show that the improved simulated annealing genetic algorithm has strong global search ability and good solution effect, which can be served as a reference for solving the long-term scheduling optimization problem of large-scale cascade hydropower stations.

标题:基于改进模拟退火遗传算法的梯级水电站长期优化调度
title:Long-Term Optimal Scheduling of Cascade Hydropower Stations Based on Improved Simulated Annealing Genetic Algorithm

作者:范金骥
authors:FAN Jinji

关键词:梯级水电站,长期优化调度,遗传算法,混沌算法,模拟退火,
keywords:cascaded hydropower stations,long-term optimal dispatching,genetic algorithm,chaos algorithm,simulated annealing,

发表日期:2017-08-31
文件大小:
5.13 MB
高速下载
2026 资料下载 联系邮件:1991591830#qq.com 浙ICP备2024084428号-1