返回列表 发布新帖

二氧化钒在太赫兹超材料中的研究进展

20 0
admin 发表于 2024-12-14 13:54 | 查看全部 阅读模式

文档名:二氧化钒在太赫兹超材料中的研究进展
摘要:超材料具有在亚波长尺度下操控电磁波的能力,近年来,通过对光场、电场、机械或温度场动态调控可以改变其光学特性的主动式超材料受到了广泛的研究.二氧化钒具有在68℃的临界温度下从低温绝缘相转变为高温金属相的特性,其电导率能够实现4~5个数量级的变化,将二氧化钒与超材料相互结合,能够满足可调谐性、高调制深度、多种调谐手段等优点.本文从二氧化钒的相变特性出发,归纳总结了二氧化钒在太赫兹超材料中的不同应用方向,主要包括可调谐太赫兹超材料吸波器、太赫兹调制器、太赫兹波前调控器以及可编程超材料,最后讨论了二氧化钒在太赫兹超材料应用中所面临的挑战和未来的发展方向.

Abstract:Therearemanyapplicationsforterahertz(THz)wavesatdifferentfrequenciesfrom0.1THzto10THzanddifferentwavelengthsbetweenmillimeterwavesandinfraredlight.THzwaveshaveattractedrecentattentionduetotheirextensiveapplicationsindetection,imaging,andcommunication.IntermsofthepropertiesofnaturalmaterialstoTHzwaves,THzmodulationdeviceshavesomelimitationsduetothenaturalmaterialproperties.THzmetamaterials,whichuseperiodicstructurestomodifythephase,amplitude,polarization,andpropagationmodeofTHzwaves,canovercomethelimitationsofnaturalmaterials.Comparedtopassivemetamaterialswithfixedopticalproperties,activemetamaterialsaremorecapableofreconfiguringandprogrammability.Anactivemetamaterialcanbeachievedviacombiningmetamaterialstructuralunitswithtunablefunctionalmaterials.Vanadiumdioxide(VO2),undergoingametal-insulatorphasetransition,exhibitsmodulationdepthsexceeding85%inelectromagneticwavetransmittancefrominfraredtoTHzfrequencies.Comparedwithotherphasetransitionmaterials(i.e.,GeTe),thephasetransitiontemperatureisclosertoroomtemperature.VO2hasapromisingapplicationinactiveTHzmetamaterialsduetoitscharacteristics.ThisreviewrepresentedthedesignprinciplesanddevelopmentofreconfigurableTHzmetamaterialsbasedonVO2,emphasizingthestructuraldesignandperformanceofdevicesfortunableTHzmodulation.ThestructureandperformanceofVO2-basedTHzmetamaterialsweredescribed.Inthefirstpartofthisreview,theapplicationofVO2intunableTHzmetamaterialabsorbersisrepresented.ThephasetransitionofVO2alterstheequivalentresistance,capacitanceandinductanceoftheperiodicpatternviareplacingtheconventionalsurfacemetalpatternsofabsorberswithpatternedVO2,resultingintunableresonanceabsorptionfrequenciesandabsorptionrates.Moreover,combiningVO2withdifferentresonancepatternsorotherfunctionalmaterialscanfurtherenhancethemodulationdepthandmodulationfrequencyofTHzabsorbers.Inthesecondpartofthisreview,wediscusstheapplicationofVO2inTHzmodulatordevicesbasedontheelectromagneticallyinducedtransparency(EIT)effect.TheEITeffectinmetamaterialsisachievedviacoupling"brightmodes"and"darkmodes"inanexternalfieldtogenerateatransparentwindow.IntegratingVO2intosuchterahertzmetamaterialscanimprovetheinstabilityissueoftraditionalmaterialsinexcitingtheEITeffectandfurtherenhancethetunabilityofmetamaterials.Thisapproachalsoprovidesafeasiblesolutionforinformationencryption.Inaddition,comparedtoconventionalmetamaterialsforwavefrontmanipulation,thecombinationofVO2andmetamaterialsallowsasimultaneousmanipulationoftheamplitudeandphaseofTHzwaves,whichsignificantlyimprovesaholographicimagingqualityandoffersadesignapproachforTHzimaging,opticalencryption,opticalcommunication,andotherapplications.Notethatalthoughthephasetransitionperformanceofvanadiumdioxidecanbeadjustedtheoretically,thethermalcontrolmethodissusceptibletotheinfluenceofthermaldiffusionfromneighboringunits,resultinginathermalcrosstalk.Itisthusessentialforfutureeffortsincreasingunitdensityandimprovingthequalityofholographicimagingtointegratelowthermalconductivitymaterialsbetweenunitstructures.Inthefinalpartofthisreview,weintroducetheuseofVO2inTHzprogrammablemetamaterials.Programmablemetamaterialsprovidesomedesignconceptsanddirectionsformetamaterialsdevelopment.CombiningVO2withmetamaterialsandthehysteresiseffectoffirst-orderphasetransition,VO2demonstratesasanonvolatilestoragecomponentinprogrammablemetamaterials.Inthisapproach,transitionstatesarestoredas"memory",allowingforintelligentTHzelectromagneticinformationprocessing,andthismemoryfunctionalitycanbealsousedforadaptivecontrol.SummaryandprospectsDespitethedevelopmentoftunableTHzmetamaterialsbasedondifferentprinciples,therearesomechallengesassociatedwiththedifficultetchingofVO2aswellasthelimitedprecisionoftheprocess.Inaddition,VO2isnotthemoststablephaseofvanadiumoxide,whichisgreatlyaffectedbyoxygenduringetching,affectingtheperformanceofTHzmetamaterialdevices.Forfutureapplications,powerconsumptionandresponsetimemustbeconsidered.Itisthereforepossibletoachievelowerpowerconsumptionandfasterthermalresponsetimeviadopingvanadiumdioxideortuningthestainbythesubstratetolowerthephasetransitiontemperature,althoughthismayintroducesomechallengessuchasadecreaseinthemagnitudeoftheconductivitychangeafterthephasetransitionandareductioninmodulationdepth.Bycontrast,itispossibletosignificantlyimprovetheresponsetimeofdevicesbyusingpulsedintenselaserexcitation.Furthermore,machinelearningandothermethodscanbeintegratedtoachieveadditionalstructuraloptimization.Field-programmablegatearray(FPGA)controlledprogrammablemetamaterials,whichcanswitchdifferentfunctionsviachanginginputencodingsequencesinrealtime,andgreatlyextendtheapplicationofmetamaterialsbydynamicallymanipulatingelectromagneticwaves.Metamaterialsapplicationandfunctionalitywillbeenhancedbyaddingsensorstodetecttemperature,humidity,illumination,etc.,facilitatingthedevelopmentofintelligentelectromagneticmetamaterialswithtunablepropertiesinthefuture.

作者:高敏  罗毅恒  路畅  林媛Author:GAOMin  LUOYiheng  LUChang  LINYuan
作者单位:电子科技大学材料与能源学院,成都610054
刊名:硅酸盐学报 ISTICEIPKU
Journal:JournaloftheChineseCeramicSociety
年,卷(期):2024, 52(7)
分类号:TB332
关键词:超材料  二氧化钒  相变材料  可调谐  
Keywords:metamaterial  vanadiumdioxide  phasechangematerials  tunable  
机标分类号:TN761O441.4TB34
在线出版日期:2024年7月24日
基金项目:国家自然科学基金,国家自然科学基金,国家自然科学基金,四川省科技计划二氧化钒在太赫兹超材料中的研究进展[
期刊论文]  硅酸盐学报--2024, 52(7)高敏  罗毅恒  路畅  林媛超材料具有在亚波长尺度下操控电磁波的能力,近年来,通过对光场、电场、机械或温度场动态调控可以改变其光学特性的主动式超材料受到了广泛的研究.二氧化钒具有在68℃的临界温度下从低温绝缘相转变为高温金属相的特性,其电...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文

        二氧化钒在太赫兹超材料中的研究进展  Research Progress on Vanadium Dioxide in Terahertz Metamaterials

二氧化钒在太赫兹超材料中的研究进展.pdf
2024-12-14 13:54 上传
文件大小:
7.53 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号-1
关灯 返回顶部
快速回复 返回顶部 返回列表