返回列表 发布新帖

[电工技术] 基于机器视觉的配网工程安全管控检测方法

10 0
admin 发表于 2025-1-28 14:30 | 查看全部 阅读模式

基于机器视觉的配网工程安全管控检测方法
摘要:针对配电网工程在施工现场受外界环境干扰因素多、现场监管难度大等问题,提出了一种基于改进的YOLOv5网络模型的配电网工程实时检测方法,并对配电网工程图像精确识别及缺陷检测进行了研究。首先,对配电网工程现场样本数据集进行标注,改进YOLOv5网络的特征提取网络,以加快多尺度融合并提高小目标物体检测的精度。在此基础上,改进损失函数、非极大值抑制模块,提高模型的识别精度与收敛速度。最后,经过Darknet深度学习模型对识别样本进行多次迭代训练,保存最优权重数据用于测试集的测试。算法通过 TensorBoard 可视化工具显示训练和测试结果。测试结果表明,每种配电网样本的平均识别准确率可达到95%以上,图片的识别速度可达到140 帧/s。同时,所改进算法检测准确率高,实时性强,满足工程现场实时使用需求。

Abstract:In view of such troubles as too much interference factors of external environment at the construction site and the worksite supervision difficulty and so on, an improved YOLOv5 network model-based realtime detection method for distribution network engineering was proposed, and the accurate image recognition as well as the defect detection of distribution network engineering were researched. Firstly, the on-site sample data set of distribution network engineering was labeled, and the feature extraction network for YOLOv5 network was improved to speed up the multi-scale fusion and to raise the detection accuracy of small target object. On this basis, the loss function and the non-maximum suppression module were improved to raise the recognition precision of the model and to accelerate the convergence speed. Secondly, by means of Darknet deep learning model the multiple iteration training was performed to the recognition samples and the optimal weight data was saved the for test set testing. Finally, by use of TensorBoard visual tool the training and test results could be displayed. Testing results show that the average recognition accuracy of each distribution network sample can reach more than 95%, and the speed of picture recognition can reach 140 fps. Meanwhile, The improved method possesses the advantages as high detection accuracy and strong real-time performance, so it can meet the need of on-site realtime use.

标题:基于机器视觉的配网工程安全管控检测方法
英文标题:A Machine Vision-Based Detection Method for Security Control of Distribution Network Engineering

作者:马静, 王庆杰, 孟海磊, 王栩成, 董啸, 赵文越, 任敬飞,

关键词:配电网工程, YOLOv5, 损失函数, 目标检测,

发表日期:2022-12-07
2025-1-27 18:47 上传
文件大小:
2.48 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号-1
关灯 返回顶部
快速回复 返回顶部 返回列表