返回列表 发布新帖

[电工技术] 基于生成对抗网络的自爆绝缘子检测模型设计

15 0
admin 发表于 2025-1-28 14:30 | 查看全部 阅读模式

基于生成对抗网络的自爆绝缘子检测模型设计
摘要:随着输电线路的持续建设,无人机逐步代替人工成为巡线工作的主要工作方式。绝缘子在输电线路中具有重要作用,然而,因自爆绝缘子导致的事故尤为频繁,从大量的航拍图像中识别自爆绝缘子,是一个亟待解决的任务。在航拍图像中,大部分绝缘子数据均是无损绝缘子,自爆绝缘子数量较少,因而无法满足识别算法的训练要求。针对现有输电线路无人机巡检中自爆绝缘子数据量稀缺的问题,该文提出了一种基于生成对抗网络的自爆绝缘子检测模型。通过生成器和鉴别器的对抗训练,该模型仅使用无损绝缘子数据训练即能完成对自爆绝缘子的检测。在此基础上,该文优化了生成对抗网络的训练过程。通过引入指导网络,解决了生成对抗网络的模式崩塌问题,提高了对自爆绝缘子检测的召回率;通过对鉴别器的输入添加扰动,解决了生成对抗网络中的样本不均衡问题,提高了对自爆绝缘子检测的精确度。通过与其他异常检测算法的对比实验,证明了该文方法的可靠性。并通过对模型各部分的消融实验,证明了该文方法各部分的可靠性。实验结果证明,该生成对抗网络模型有效避免了传统生成对抗网络中的缺陷,完成了对自爆绝缘子的高效自动检测。

Abstract:With the continued construction of transmission lines in China, the manual work on line patrol is being replaced gradually by the unmanned aerial vehicle, Insulators play important role in transmission lines, however, in view of that the accidents caused by self-bursting insulators particularly frequently occur, so identifying self-bursting insulators from aerial images is an urgent task to be solved. In the aerial images, most of the insulator data belong to lossless insulators and less data belong to the self-bursting insulators, which number is small, thus not meeting the training requirements of the recognition algorithm. In allusion to the scarcity of self-exploding insulator data in existing transmission line unmanned aerial vehicle (abbr. UAV) inspections, based on generative adversarial networks a self-exploding insulator detection model was proposed. Through adversarial training between the generator and the discriminator, the proposed model could complete the detection of self-exploding insulators by only using lossless insulator data during training. The training process of the generative adversarial network was optimized. By means of introducing a guidance network, the mode collapse problem of the generative adversarial network could be solved, and the recall rate of the self-exploding insulator detection was improved; through adding a perturbation to the input of the discriminator, the sample imbalance problem in the generative adversarial network was solved, and the accuracy of the self-exploding insulator detection was improved. The reliability of the put forward method was demonstrated through comparison experiments with other anomaly detection algorithms. The reliability of each part of the put forward method was also demonstrated by ablation experiments on each part of the model. The experimental results demonstrate that the defects in traditional generative adversarial networks can be effectively avoided by the proposed generative adversarial network model, and the efficient automatic detection of self-exploding insulators is accomplished.

标题:基于生成对抗网络的自爆绝缘子检测模型设计
英文标题:New Design of Self-Explosive Insulator Detection Model Based on Generative Adversarial Network

作者:及浩然, 侯春萍, 杨阳, 张贵峰, 及泓鸥, 赵艺,

关键词:无人机巡检, 绝缘子, 异常检测, 深度学习, 生成对抗网络,

发表日期:2022-10-10
2025-1-27 18:47 上传
文件大小:
3.3 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号-1
关灯 返回顶部
快速回复 返回顶部 返回列表