返回列表 发布新帖

[电工技术] 基于变分模态分解的卷积神经网络−双向门控循环单元−多元线性回归多频组合短期电力负荷预测

13 0
admin 发表于 2025-1-28 10:30 | 查看全部 阅读模式

基于变分模态分解的卷积神经网络−双向门控循环单元−多元线性回归多频组合短期电力负荷预测
摘要:为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple linear regression,MLR)混合的多频组合短期电力负荷预测模型。该模型先利用关联度分析得到相似日,并将其负荷组成新的数据序列,同时使用变分模态分解(variational mode decomposition,VMD)将该数据序列进行分解,并重构成高低2种频率。对于高频分量,使用CNN-BiGRU模型进行预测;低频部分则使用MLR。最后将各个模型得出的预测结果叠加,得到最终预测结果。以2006年澳大利亚真实数据为例,进行短期电力负荷预测。仿真结果表明,相比于其他网络模型,该模型具有较高的预测精度和拟合能力,是一种有效的短期负荷预测方法。

Abstract:To effectively improve the accuracy of power load forecasting and in allusion to such characteristics of power load as nonlinearity, non-stationary and time sequence, a multi-frequency combination power load forecasting model, in which the Convolutional Neural Network (abbr. CNN) and the Bidirectional Gated Recurrent Unit (abbr. BiGRU) and the Multiple Linear Regression (abbr. MLR were mixed, was proposed. Firstly, in the proposed model the correlation degree analysis was utilized to obtain similar days and their loads were constituted new data series, meanwhile the variational mode decomposition (abbr. VMD) was used to decompose the obtained data series and reconstruct into high and low frequencies. As for the high-frequency component the CNN-BiGRU model was used for the prediction; and for the low-frequency component the MLR was used. Finally, superposing the predicted results obtained by above mentioned two models the final predicted results could be obtained. Based on the real data of Australia in 2006, a short-term load forecasting was performed. Simulation results show that comparing with other network models, by use of the proposed model the forecasting results possess higher prediction accuracy and fitting ability.

标题:基于变分模态分解的卷积神经网络−双向门控循环单元−多元线性回归多频组合短期电力负荷预测
英文标题:Multi-Frequency Combination Short-term Power Load Forecasting with Convolutional Neural Networks - Bidirectional Gated Recurrent Unit-Multiple Linear Regression based on Variational Mode Decomposition

作者:方娜, 李俊晓, 陈浩, 李新新,

关键词:变分模态分解, 卷积神经网络, 双向门控循环单元, 多元线性回归, 负荷预测,

发表日期:2022-07-27
2025-1-27 18:46 上传
文件大小:
2.37 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号-1
关灯 返回顶部
快速回复 返回顶部 返回列表