返回列表 发布新帖

[能源与动力工程] 基于HS-Clustering的风电场机组分组功率预测

16 0
admin 发表于 2025-1-26 12:00 | 查看全部 阅读模式

基于HS-Clustering的风电场机组分组功率预测
摘要:为了寻求风电场功率预测精度和计算效率二者的平衡,提出了一种基于霍普金斯统计量与聚类算法(HS-Clustering)的风电场机组分组功率预测方法,该方法将霍普金斯统计量与聚类算法的优势有效结合,采用霍普金斯统计量确定场内机组分组个数,通过聚类算法识别不同机组的相似性将风电场分成不同的机组群,然后对每组机群分别建立功率预测模型,从而叠加得到整场输出功率;另外以实测风速、实测功率及二者组合作为机组分组模型输入,分析其对预测精度的影响程度。实例分析表明基于HS-Clustering的分组预测方法可以显著提高预测精度,同时保证较高的计算效率;风速是影响分组效果的主要因素,对于某些分组模型,功率又可以作为风速的重要补充。

Abstract:In order to balance the forecast accuracy and computational efficiency, a wind power forecasting method for clustering wind turbines is proposed based on effective combination of Hopkins statistics (HS) and clustering methods, in which Hopkins Statistics is used to determine the clustering number of a wind farm, and wind turbines in a wind farm are clustered into several groups according to the identifying of similar characteristics by clustering method. Then power forecasting model of each clustering group is built separately, whose power output is added to obtain whole power output of the wind farm. In addition, the real-time monitoring wind speed, power output and their combination are taken as the inputs for clustered group model, and their influences on the accuracy of clustering forecast model are analyzed. The case analysis shows that the HS-Clustering based forecasting method can effectively forecast the output power of the whole wind farm with better accuracy and higher computational efficiency, wind speed is the main factor affecting clustering results, and wind power can be regarded as an important additional factor as to certain group models.

标题:基于HS-Clustering的风电场机组分组功率预测
英文标题:Wind Power Forecasting for Clustering Wind Turbines Based on HS-Clustering

作者:高小力, 张智博, 田启明, 刘永前,

关键词:机组分组个数, 功率预测, 霍普金斯统计量, 聚类算法,

发表日期:2017-06-09
2025-1-25 21:08 上传
文件大小:
4.09 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号-1
关灯 返回顶部
快速回复 返回顶部 返回列表