返回列表 发布新帖

[电工技术] 基于自编码网络的局部放电信号特征提取与识别

11 0
admin 发表于 2025-1-24 08:30 | 查看全部 阅读模式

基于自编码网络的局部放电信号特征提取与识别
气体绝缘金属封闭开关设备(GIS)的状态影响电力系统运行的可靠性,而局部放电是设备潜伏性绝缘故障的重要表现之一。传统局部放电模式识别方法依赖专家经验选取局部放电特征,主观性强且不确定度高。针对这一问题,文中提出将深度学习技术引入局部放电模式识别领域,运用卷积神经网络及其扩展自编码网络提取局部放电信号特征,充分发挥自编码网络的特征抽取能力。同时,将所提取的特征与经典分类器进行衔接,有机结合传统机器学习方法与深度学习方法,实现局部放电信号的基本参数提取、统计特征计算与放电类型识别。实验结果表明,文中所提方法提取的特征相较传统的人工特征可明显提高局部放电的分类准确率和分类效率,具有广阔的工程应用前景。

标题:
基于自编码网络的局部放电信号特征提取与识别
Feature extraction and recognition of partial discharge signal based on self-encoding network

作者:
李玉杰,田阳普,赵科,刘成宝,王林杰,毛恒
LI Yujie, TIAN Yangpu, ZHAO Ke, LIU Chengbao, WANG Linjie, MAO Heng

关键词:
局部放电;特征提取;自编码网络;分类器;模式识别
partial discharge;feature extraction;auto-encoder network;classifier;pattern recognition
2025-1-23 19:46 上传
文件大小:
4.75 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号-1
关灯 返回顶部
快速回复 返回顶部 返回列表