返回列表 发布新帖

[能源与动力工程] 基于无人机图像与迁移学习的线路绝缘子状态评价方法

15 0
admin 发表于 2025-1-23 16:00 | 查看全部 阅读模式

基于无人机图像与迁移学习的线路绝缘子状态评价方法
针对目前绝缘子运维过程存在着规程过于繁杂,过于依赖运维人员的人工识别等问题,文中提出了一种绝缘子状态评价方法,该方法采用历史绝缘子缺陷图像作为训练样本,通过迁移学习在小样本数据处理的优异性能实现基于深度卷积神经网络绝缘子的缺陷识别模型训练,并借助卷积神经网络的特征提取能力实现绝缘子缺陷量化评分,结合历史样本与专家经验实现考虑运行年限、外界环境等因素实现绝缘子综合状态评价。通过实例分析表明文中迁移学习模型训练后绝缘子缺陷识别准确率可达到90%以上,而采用全新学习在同样的样本条件下识别准确率仅为70%,且文中建立的评价模型在日常运维中能够更为灵敏地体现绝缘子的缺陷状态,说明文中评价方法具有相当可靠性,可为运维人员的日常维护安排提供经验。

标题:
基于无人机图像与迁移学习的线路绝缘子状态评价方法
Insulator state evaluation method based on UAV image and migration learning

作者:
罗建军,刘振声,龚翔,黄绍川,欧阳业,魏征
LUO Jianjun, LIU Zhensheng, GONG Xiang, HUANG Shaochuan, OUYANG Ye, WEI Zheng

关键词:
无人机巡检;迁移学习;绝缘子;缺陷识别;状态评价
UAV image;transfer learning;insulator;defect recognition;status evaluation
2025-1-22 20:09 上传
文件大小:
2.17 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表