返回列表 发布新帖

[能源与动力工程] 基于VMD-PE-MulitiBiLSTM的超短期风电功率预测

13 0
admin 发表于 2025-1-22 10:00 | 查看全部 阅读模式

基于VMD-PE-MulitiBiLSTM的超短期风电功率预测
摘要:为减少超短期风电功率预测的误差,提出基于变分模态分解(variational mode decomposition,VMD)-排列熵(permutation entropy,PE)和多层双向长短时记忆(multilayer bidirectional long short-term memory, MultiBiLSTM)组合的超短期风电功率预测模型。首先,利用VMD分解算法将历史风电功率序列分解成若干个子模态分量,根据计算的PE值重构分解的子模态风电分量;然后,使用特征注意力(feature attention,FA)机制和深度残差级联网络(deep residual cascade network,DRCnet)构建MulitiBiLSTM预测模型,预测重构后的子序列;最后,重构子序列预测值,得到最终风电功率预测结果。使用贵州某风场的数据集对所提出的方法进行验证,并和其他预测模型进行对比。结果表明,使用VMD-PE-MultiBiLSTM模型能显著降低风电功率预测误差。

Abstract:In order to reduce the error of ultra-short-term wind power prediction, an ultra-short-term prediction model of wind power based on variational mode decomposition (VMD), permutation entropy (PE) and multilayer bidirectional long short-term memory (MultiBiLSTM) is proposed. Firstly, the historical wind power sequence is decomposed into several sub-modal components using VMD decomposition algorithm, and the sub-modal wind power components are reconstructed according to the calculated PE value. Then, the feature attention (FA) mechanism and deep residual cascade network (DRCnet) are used to construct a MulitiBiLSTM prediction model to predict the reconstructed subsequences. Finally, the predicted value of the sub-sequence is reconstructed to obtain the final prediction result of wind power. The datum set of a wind field in Guizhou province is used to verify the proposed method and compare it with other prediction models. The results show that using VMD-PE-MultiBiLSTM model can significantly reduce the prediction error of wind power.

标题:基于VMD-PE-MulitiBiLSTM的超短期风电功率预测
title:Ultra-Short-Term Prediction of Wind Power Based on VMD-PE-MulitiBiLSTM

作者:陈烨烨,李瑶,李捍东
authors:CHEN Yeye,LI Yao,LI Handong

关键词:风电功率超短期预测,变分模态分解(VMD),排列熵(PE),多层双向长短时记忆(MultiBiLSTM),
keywords:ultra-short-term prediction of wind power,variational mode decomposition (VMD),permutation entropy (PE),multilayer bidirectional long short-term memory (MultiBiLSTM),

发表日期:2024-05-15
2025-1-21 20:17 上传
文件大小:
6.36 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表