返回列表 发布新帖

[能源与动力工程] 基于改进LSTM算法的综合能源系统多元负荷预测

9 0
admin 发表于 2025-1-22 15:00 | 查看全部 阅读模式

基于改进LSTM算法的综合能源系统多元负荷预测
摘要:准确预测短期多种能源负荷,是确保综合能源系统可靠、高效运行的必要前提。为此,提出了一种基于遗传粒子群混合优化(genetic algorithm particle swarm optimization, GAPSO)算法的卷积长短期记忆神经网络(convolutional neural network-long short-term memory, CNN-LSTM)综合能源系统多元负荷预测模型。首先,利用皮尔逊系数来描述各影响因素与负荷之间的相关性强弱。其次,采用GAPSO算法对长短期记忆(long short-term memory, LSTM)网络模型进行改进,然后构建卷积神经网络(convolutional neural networks, CNN)以提取小时级高阶特征,并通过改进后的LSTM网络模型对提取的隐含高阶特征进行分位数回归建模,构建了基于GAPSO-CNN-LSTM综合能源系统多元负荷预测模型。最后,以美国亚利桑那州立大学坦佩校区综合能源系统负荷数据为算例进行验证,结果表明:改进后的算法具有更好的收敛能力,模型具有更高的预测精度。

Abstract:Accurate prediction of short-term multiple energy loads is a prerequisite to ensure the reliable and efficient operation of integrated energy system. For this reason, a convolutional neural network-long short-term memory (CNN-LSTM) model for integrated energy system multivariate load prediction based on genetic algorithm particle swarm optimization (GAPSO) is proposed. Firstly, Pearson's coefficient is used to describe the correlation between the influencing factors and the load. Secondly, GAPSO algorithm is used to improve the LSTM model, and then a one-dimensional CNN is constructed to extract the hourly higher-order features, and the extracted implicit higher-order features are partitioned by the improved long short-term memory (LSTM) modeling. The multivariate load forecasting model based on GAPSO-CNN-LSTM for integrated energy system is constructed through quantile regression modeling. Finally, the load data of integrated energy system of Arizona State University Tempe Campus is used as an example, and the results show that the improved algorithm has a better convergence ability and the model has a higher prediction accuracy.

标题:基于改进LSTM算法的综合能源系统多元负荷预测
title:Multiple Load Forecasting of Integrated Energy System Based on Improved LSTM Algorithm

作者:闫照康,马刚,冯瑞,徐健玮,沈静文
authors:YAN Zhaokang,MA Gang,FENG Rui,XU Jianwei,SHEN Jingwen

关键词:长短期记忆(LSTM),卷积神经网络(CNN),遗传粒子群混合优化(GAPSO)算法,综合能源系统,负荷预测,
keywords:long short-term memory (LSTM),convolutional neural networks (CNN),genetic algorithm particle swarm optimization (GAPSO),integrated energy systems,load forecasting,

发表日期:2024-05-15
2025-1-21 20:17 上传
文件大小:
9.21 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号-1
关灯 返回顶部
快速回复 返回顶部 返回列表