返回列表 发布新帖

[能源与动力工程] 基于多尺度分解集成组合模型的碳价格预测研究

11 0
admin 发表于 2025-1-22 10:30 | 查看全部 阅读模式

基于多尺度分解集成组合模型的碳价格预测研究
摘要:准确预测碳价格不仅有助于投资者及监管部门的科学决策,而且有助于碳金融市场的健康发展。考虑碳价格预测的复杂性,基于“分解-重构-预测-集成”的建模原则,构建了多尺度碳价格集成组合预测模型。首先,采用改进型自适应白噪声完备集成经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)算法对碳价原始序列进行分解,并以综合贡献度指数(comprehensive contribution index,CCI)对分量进行重构,得到短期、长期和趋势分量;然后,采用门限广义自回归条件异方差(threshold generalized auto-regressive conditional heteroscedasticity,TGARCH)模型预测短期分量,以布谷鸟搜索(cuckoo search,CS)算法优化超参数的长短期记忆(long-short term memory,LSTM)神经网络预测长期和趋势分量;在此基础上,采用非线性集成算法对各分量预测结果进行集成,得到最终的碳价预测结果。以湖北碳市场为样本数据进行实证分析,结果表明所构建的预测模型性能最优,预测结果更准确,可为监管部门和企业决策提供有效信息。

Abstract:Precise prediction of carbon prices is not only of significance for policy formulation and investment decisions, but also helpful to the carbon finance market development. Considering the non-stationary and nonlinearity characteristics inherent in the carbon price, this study proposed a novel hybrid model named ICEEMDAN-TGARCH/LSTM(CS)-LSTM(CS), in which the ICEEMDAN (improved complete ensemble empirical mode decomposition with adaptive noise) is applied to decompose the carbon price original series into several subcomponents, then the subcomponents are identified according to comprehensive contribution index (CCI) and divided into short-term, long-term and trend components. TGARCH(threshold generalized auto-regressive conditional heteroscedasticity) is chosen for the short-term components forecasting, while LSTM (long-short term memory) neural network model with hyper-parameters optimized by cuckoo search (CS) algorithm is selected to forecast other components and combine all the forecasting sequences. The empirical results Hubei carbon emission trading market indicated that the proposed model outperformed other benchmark models with the lowest prediction error, meaning that the hybrid model proposed by us can be an effective and accurate tool for carbon price forecasting. It provides effective information for regulatory authorities and enterprises to make decisions.

标题:基于多尺度分解集成组合模型的碳价格预测研究
title:Carbon Price Prediction Based on Multi-Scale Decomposition Integrated Combination Model

作者:王喜平, 于一丁
authors:WANG Xiping, YU Yiding

关键词:碳价格预测,长短期记忆(LSTM)模型,门限广义自回归条件异方差(TGARCH)模型,改进型自适应白噪声完备集成经验模态(ICEEMDAN)分解,超参数优化,
keywords:carbon price forecasting,long-short term memory(LSTM) model,threshold generalized auto-regressive conditional heteroscedasticity (TGARCH) model,improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) decomposition,hyper-parameters optimization,

发表日期:2022-04-08
2025-1-21 20:13 上传
文件大小:
2.67 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号-1
关灯 返回顶部
快速回复 返回顶部 返回列表