返回列表 发布新帖

[能源与动力工程] 基于类噪声数据的电力系统低频振荡模态参数辨识

13 0
admin 发表于 2025-1-21 16:00 | 查看全部 阅读模式

基于类噪声数据的电力系统低频振荡模态参数辨识
摘要:低频振荡是影响互联电力系统安全稳定运行的关键问题之一,提出采用变分模态分解(variational mode decomposition,VMD)提取类噪声数据的低频振荡信号,基于离散傅里叶变换(discrete Fourier transform,DFT)曲线拟合的电力系统低频振荡模态辨识方法。首先,采用VMD分解滤除类噪声数据信号中的直流分量,提取出低频振荡信号,利用模态相关系数确定VMD分解个数,提高了信号分解的时效性;其次,建立类噪声数据自回归滑动平均(auto regressive moving average,ARMA)数学模型,模拟产生数据信号,利用低频振荡信号自相关函数的DFT曲线拟合估计拉普拉斯变换系数,提取机电振荡特征参数;最后,采用模拟数据和某实测相量测量单元数据验证了该方法的可行性和有效性。试验表明,采用VMD算法和基于DFT的曲线拟合法提取低频振荡特征参数,有效提高了机电小干扰稳定评估的实时性。

Abstract:Low frequency oscillation is one of the key problem affecting the safe and stable operation of interconnected power system, variational modal decomposition (VMD) was used to extract low-frequency oscillation signals from ambient data, and a method of low-frequency oscillation modal identification for power systems discrete Fourier transform (DFT)-based curve fitting was proposed in this paper. Firstly, the DC component of ambient data signals was filtered by VMD decomposition to extract low-frequency oscillation signals. The number of VMD decomposition was determined by modal correlation coefficient, which improved the timeliness of signal decomposition. Secondly, the auto regressive moving average (ARMA) model of ambient data was established to simulate the generation of data signals. The DFT curve fitting of low-frequency oscillation signal autocorrelation function was used to estimate the Laplace transform coefficient and extract characteristic parameters of electromechanical oscillation. Finally, Simulation data and some measured phasor measurement unit (PMU) data are used to verify the feasibility and effectiveness of the method. The experiment shows that the sampling VMD algorithm and the curve fitting method based on DFT can extract the characteristic parameters of low-frequency oscillation, which effectively improves the real-time performance of electromechanical small interference stability.

标题:基于类噪声数据的电力系统低频振荡模态参数辨识
title:Modal Parameter Identification of Low Frequency Oscillation in Power System Based on Ambient Data

作者:闫红艳, Kwon Hwang Jin, 高艳丰
authors:Hongyan YAN, Jin Kwon HWANG, Yanfeng GAO

关键词:低频振荡,类噪声数据,自回归滑动平均(ARMA)模型,变分模态分解(VMD),离散傅里叶变换(DFT)曲线拟合,
keywords:low frequency oscillation,ambient data,auto regressive moving average (ARMA) model,variational modal decomposition (VMD),discrete Fourier transform (DFT) curve-fitting,

发表日期:2022-02-28
2025-1-21 00:23 上传
文件大小:
2.87 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号-1
关灯 返回顶部
快速回复 返回顶部 返回列表