返回列表 发布新帖

[金属工艺] 一种基于小波包和主成分分析的超声信号特征提取方法

20 0
admin 发表于 2025-1-19 14:57 | 查看全部 阅读模式

一种基于小波包和主成分分析的超声信号特征提取方法
摘要:为了有效识别不同类型的超声缺陷信号,提出了一种基于小波包分解和主成分分析(Principal Component Analysis,PCA)的信号特征提取方法。首先,提取缺陷信号小波包分解后的能量系数组成多维特征向量集;然后,使用PCA方法对多维特征向量进行降维得到融合特征量;最后,输入BP神经网络对不同类型的缺陷信号进行分类测试,并与未经PCA处理的特征量分类测试结果进行对比。试验结果证明,该特征量提取的方法能够有效地对缺陷进行分类,且测试速度明显得到提高。

标题:一种基于小波包和主成分分析的超声信号特征提取方法

作者:肖力伟,

关键词:小波包,能量系数,PCA,特征融合量,缺陷分类,

发表日期:2019年12月
2025-1-19 14:57 上传
文件大小:
4.1 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表