返回列表 发布新帖

[金属工艺] 基于深度学习的焊缝缺陷X射线检测图像识别与增强

17 0
admin 发表于 2025-1-19 14:29 | 查看全部 阅读模式

基于深度学习的焊缝缺陷X射线检测图像识别与增强
摘要:为了提高焊缝缺陷X射线图像识别的准确率,需要采用有效的图像增强技术,笔者研究了不同图像增强方法对焊缝图像质量的影响,用峰值信噪比、结构相似度、结构清晰度、信息熵等参数对图像增强质量进行评价。试验结果表明,直方图均衡化(HE)与限制对比度自适应直方图均衡化(CLAHE)有较好的对比度增强效果,非局部均值滤波(NLM)与小波降噪(DWT)的去噪综合表现较好。基于CLAHE-NLM的图像增强处理可以更有效地帮助深度学习模型进行焊缝缺陷分类识别,焊缝缺陷分类的准确率与F1值达97.6%和96.93%,相较于未增强处理的数据集提高了3.2%与5.23%。

标题:基于深度学习的焊缝缺陷X射线检测图像识别与增强

作者:王树森,李萍,黄大伟,李晓庆,吴中华,张忠仁,王爽,田双,杨毅德,

关键词:图像增强,深度学习,焊缝缺陷,X射线,

发表日期:2024年6月
2025-1-19 14:29 上传
文件大小:
700.09 KB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号-1
关灯 返回顶部
快速回复 返回顶部 返回列表