人工神经网络在基桩低应变完整性检测中的应用
摘要:目前基桩低应变完整性检测数据的后期处理有很多方法,但分析中人为干预较多。利用人工神经网络强大的非线性映射能力和学习训练功能,提出了基于BP网络的基桩完整性检测模型。该模型基于现场实测资料,避免了数据处理过程中各种人为干预。应用该模型对工程实例进行了分析,训练和测试网络结果说明该方法能够快速、方便地对基桩质量进行模式识别
Abstract:There are many methods for analyzing the data of low strain integrity testing on foundation piles, but there are a lot of the artificial interferences in the data processing. Based on the powerful nonlinear reflection and training function of artificial neural networks,the model of BP neural network for foundation piles integrity testing is put forward. According to in-situ measurements, every interference in the data processing can be avoided in this model. At last, the model is applied to the analyzing a case history. The results of training and examination show that this method is speediness and convenience on the pattern identification of pile integrity.
中文标题:
人工神经网络在基桩低应变完整性检测中的应用
The Application of Artificial Neural Networks to Low Strain Integrity Testing of Foundation Piles
作者:
冯劲,高广运
FENG Jing,GAO Guang-yun
作者简介:冯劲,1980年生,男,汉族,安徽合肥人,同济大学硕士研究生,研究方向土动力学与桩基础。
通讯地址:
同济大学地下建筑与工程系, 上海 200092
DepartmentofGeotechnicalEngineering,TongjiUniversity,Shanghai200092China
中图分类号:TU473;TP391
出版物:岩土工程技术
收稿日期:2004-11-04
网络出版日期:2021-07-07
关键词:基桩完整性,低应变动测,人工神经网络,模式识别
Key words:foundation piles integrity,low strain dynamic testing,artificial neural networks,pattern identification
文档包含图片数量:图片(0)张
文档包含表格数量:表格(0)个
参考文献:
基金项目:
基金项目: 上海市重点学科(岩土工程)建设资助项目
- 文件大小:
- 188.1 KB
- 下载次数:
- 60
-
高速下载
|