文档名:车联网V2I场景下基于GNN的SCFDMA智能信道估计
摘要:随着车联网的迅猛发展,车对路基础设施(VehicletoInfrastructure,V2I)通信对车联网的可靠性和时延提出了更高的要求,而信道估计是接收机高可靠低时延通信的重要保障.为解决传统信道插值算法不能有效拟合V2I信道快时变特性、自适应多普勒频移能力弱和传统神经网络可解释性不强的问题,本文提出基于图神经网络(GraphNeuralNetwork,GNN)的单载波频分多址(SingleCarrier-FrequencyDivisionMultipleAccess,SC-FDMA)智能信道估计算法.该算法将信道频率响应中的数据点作为图的节点、符号间时域相关性作为边,将图化后的数据送入GraphSAGE信道插值器(GraphSAGEChannelInterpolator,GCI)中,通过边更新、聚合操作、节点更新三大模块进行网络训练,同时采用多普勒频移矢量作为节点特征控制网络拟合不同多普勒条件的信道,使得网络具备可解释性.最后,系统仿真验证了在不同速度环境下算法的有效性和鲁棒性,较线性插值、样条插值以及全连接网络,本文所提GCI在低、中和高速移动环境下具有最优的误码率(BitErrorRate,BER)和归一化均方误差(NormalizedMeanSquareError,NMSE)性能,特别地,在200km/h高速移动条件下GCI的优势更为明显.
Abstract:WiththerapiddevelopmentoftheInternetofvehicles,vehicletoinfrastructure(V2I)communicationputsforwardhigherrequirementsforthereliabilityanddelayofvehiclenetworking.Channelestimationisanimportantguaran-teeforhighreliableandlow-latencycommunicationofreceiver.Tosolvetheproblemsthatthetraditionalchannelinterpola-tionalgorithmcannoteffectivelyfitthefasttime-varyingcharacteristicsofV2Ichannel,theabilityofadaptiveDopplerfre-quencyshiftisweak,andtheinterpretabilityoftraditionalneuralnetworkisnotstrong,thispaperpresentsasinglecarrier-frequencydivisionmultipleaccess(SC-FDMA)intelligentchannelestimationalgorithmbasedongraphneuralnetwork(GNN).Theproposedalgorithmtakesthedatapointsinthechannelfrequencyresponseasthenodesofthegraphandthein-ter-symboltimedomaincorrelationastheedges.ThegraphicaldataisfedintotheGraphSAGEchannelinterpolator(GCI).Thenetworktrainingiscarriedoutthroughthethreemodulesofedgeupdate,aggregationoperationandnodeupdate.Atthesametime,theDopplershiftvectorisusedasthenodefeaturecontrolnetworktofitthechannelswithdifferentDopplerconditions,makingthenetworkinterpretable.Finally,thesystemsimulationverifiestheeffectivenessandrobustnessofthealgorithmindifferentspeedenvironments.Comparedwithlinearinterpolation,splineinterpolationandfullyconnectednet-work,theproposedGCIhasthebestperformanceofbiterrorrate(BER)andnormalizedmeansquareerror(NMSE)inlow,mediumandhigh-speedmobileenvironments,especially,theadvantageofGCIismoreobviousundertheconditionof200km/hhigh-speedmovement.
作者:廖勇 尹子松 田肖懿Author:LIAOYong YINZi-song TIANXiao-yi
作者单位:重庆大学微电子与通信工程学院,重庆400044
刊名:电子学报 ISTICEIPKU
Journal:ActaElectronicaSinica
年,卷(期):2024, 52(3)
分类号:TN929.5
关键词:车联网 V2I 双选衰落信道 高速移动 多普勒频移 GNN 信道估计 信道频率响应
Keywords:Internetofvehicles V2I doublyselectivefadingchannel highmobility Dopplershift GNN channelestimation channelfrequencyresponse
机标分类号:TN929.5P412TH164
在线出版日期:2024年5月16日
基金项目:车联网V2I场景下基于GNN的SC-FDMA智能信道估计[
期刊论文] 电子学报--2024, 52(3)廖勇 尹子松 田肖懿随着车联网的迅猛发展,车对路基础设施(VehicletoInfrastructure,V2I)通信对车联网的可靠性和时延提出了更高的要求,而信道估计是接收机高可靠低时延通信的重要保障.为解决传统信道插值算法不能有效拟合V2I信道快时变...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文
车联网V2I场景下基于GNN的SC-FDMA智能信道估计 Intelligent Channel Estimation of SC-FDMA Based on GNN for V2I Scenarios in Internet of Vehicles
车联网V2I场景下基于GNN的SC-FDMA智能信道估计.pdf
- 文件大小:
- 2.79 MB
- 下载次数:
- 60
-
高速下载
|