文档名:基于Retinex模型和GTV的铁路货车铸件DR图像增强
摘要:铁路运输已成为我国最重要的运输方式之一,铁路货车部件(摇枕、侧架等)的铸造缺陷(气孔、裂纹等)可能造成交通事故.由于铁路铸件自身的不均匀性会导致原始DR图像灰度不均,不易捕捉缺陷细节,因此需要对原始DR图像进行图像增强等操作检测缺陷.基于Retinex模型,同时考虑目标的光照强度和材质信息,将图像分解为光照图和反射图.基于高斯全变分(GTV)的保护图像边缘滤波器可以平滑光照图像,并且可以移除光照图的纹理细节,因此缺陷等细节就暴露在反射图中.对于铁路货车铸件的缺陷识别问题,结合Retinex和GTV方法,提出一种改进的Retinex增强模型,利用GTV和基于纹理感知的加权项对Retinex分解过程中的光照图和反射图进行正则化.此外,用交替优化算法求解该模型.最后,将能够反映图像缺陷细节的反射图作为最终增强图像.此方法得到的图像不仅保留了图像的结构信息,还明显暴露了图像的缺陷细节.实验结果表明,与其他已有的模型相比,该模型增强缺陷效果显著,此外,该模型提高了DR图像的信息熵、平均梯度等量化指标.与原图相比,增强后图像的信息熵提高了8%以上,平均梯度至少提高为原来的6倍.此方法提高了DR图像检测缺陷的能力,可以应用于铁路货车铸件等无损检测领域.
作者:任雨霞 曾理Author:RENYuxia ZENGLi
作者单位:重庆大学数学与统计学院,重庆401331;重庆大学工业CT无损检测教育部工程研究中心,重庆400044
刊名:铁道科学与工程学报 ISTICPKU
Journal:JournalofRailwayScienceandEngineering
年,卷(期):2023, 20(2)
分类号:U216.3TP391.4
关键词:铁路货车铸件 缺陷检测 图像增强 Retinex模型 高斯全变分
机标分类号:TP391.4TP751TN911.73
在线出版日期:2023年4月3日
基金项目:国家自然科学基金基于Retinex模型和GTV的铁路货车铸件DR图像增强[
期刊论文] 铁道科学与工程学报--2023, 20(2)任雨霞 曾理铁路运输已成为我国最重要的运输方式之一,铁路货车部件(摇枕、侧架等)的铸造缺陷(气孔、裂纹等)可能造成交通事故.由于铁路铸件自身的不均匀性会导致原始DR图像灰度不均,不易捕捉缺陷细节,因此需要对原始DR图像进行图像增...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文
基于Retinex模型和GTV的铁路货车铸件DR图像增强 DR image enhancement of railway freight car castings based on Retinex model and GTV
基于Retinex模型和GTV的铁路货车铸件DR图像增强.pdf
- 文件大小:
- 15.3 MB
- 下载次数:
- 60
-
高速下载
|