文档名:基于双图混合随机游走的社会化推荐模型
摘要:近年来,可以有效缓解数据稀疏和冷启动问题的社会化推荐受到了研究者和业界的关注.社会化推荐利用显式或隐式社交关系作为辅助信息,提升了推荐性能.然而,目前的社会化推荐模型通常采用普通图描述社交关系.普通图中的边常描述为成对节点的关系,这种方法适合描述显式关系,但难以描述复杂的隐式关系,如购买过同一商品的多个用户之间的集合关系,因此难以学习到准确的节点表示,影响推荐的性能.针对此问题,本文结合超图和普通图,提出基于双图混合随机游走的推荐(BG-Rec)模型.构建超图描述复杂的隐式关系,同时用普通图描述显式的社交关系,并在两种图上定义混合随机游走策略,生成结合隐式关系和显式关系的游走节点序列,学习更准确的节点嵌入表示.根据用户评分的高低,构建了正反馈超图和负反馈超图,考虑更细粒度的朋友关系,以识别可靠的朋友.融合可靠朋友的偏好和后验概率最大化优化物品个性化排序.三个公开数据集的大量实验表明了BG-Rec在推荐性能上的优越性,冷启动和消融实验表明了其在缓解冷启动问题的有效性和超图建模的合理性.
作者:曹阳 高旻 余俊良 范琪琳 荣文戈 文俊浩 Author:CAOYang GAOMin YUJun-liang FANQi-lin RONGWen-ge WENJun-hao
作者单位:信息物理社会可信服务计算教育部重点实验室(重庆大学),重庆400044;重庆大学大数据与软件学院,重庆400044昆士兰大学信息技术与电气工程学院,澳大利亚昆士兰州4072北京航空航天大学计算机学院,北京10019
刊名:电子学报 ISTICEIPKU
Journal:ActaElectronicaSinica
年,卷(期):2023, 51(2)
分类号:TP311
关键词:推荐系统 社交关系 随机游走 超图 个性化排序
机标分类号:TP393.09TP181TN929.5
在线出版日期:2023年5月8日
基金项目:国家自然科学基金,重庆市自然科学基金面上项目,中央高校基本科研业务费项目,重庆市留学人员创业创新支持计划,重庆市技术创新与应用示范专项产业类重点研发项目,重庆市技术创新与应用发展专项基于双图混合随机游走的社会化推荐模型[
期刊论文] 电子学报--2023, 51(2)曹阳 高旻 余俊良 范琪琳 荣文戈 文俊浩近年来,可以有效缓解数据稀疏和冷启动问题的社会化推荐受到了研究者和业界的关注.社会化推荐利用显式或隐式社交关系作为辅助信息,提升了推荐性能.然而,目前的社会化推荐模型通常采用普通图描述社交关系.普通图中的边常...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文
基于双图混合随机游走的社会化推荐模型 Bi-Graph Mix-random Walk Based Social Recommendation Model
基于双图混合随机游走的社会化推荐模型.pdf
- 文件大小:
- 2.22 MB
- 下载次数:
- 60
-
高速下载
|