文档名:基于改进残差网络的锂离子电池故障诊断
摘要:针对残差网络(ResNet)对特征提取准确率低和拟合度不够的问题,提出一种基于改进残差网络的锂离子电池故障诊断方法.首先,利用Simulink对电池容量变小、内阻变大、充电不足和自放电大等4种故障进行故障模拟,得到故障电压数据,作为输入,将首层提取的特征因式分解,分别加到后面的每一层;然后,引入注意力模块(SELayer)分支轻量化;最后,采用反卷积上采样,使远距离残差特征融合,加深特征提取能力,并降低计算量.改进残差网络故障模拟实验表明,与传统的ResNet50、ResNext、DensNet121和DensNet169等4种模型相比,所提模型的诊断准确率从88.63%提高到99.00%以上,参数量从2500万减小到了2470万,收敛速度上也具有一定的优势.
作者:段双明 徐超Author:DUANShuang-ming XUChao
作者单位:东北电力大学现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林吉林132012
刊名:电池 ISTICPKU
Journal:BatteryBimonthly
年,卷(期):2023, 53(3)
分类号:TM912.9
关键词:锂离子电池 特征提取 故障诊断 残差神经网络 注意力模块
Keywords:Li-ionbattery featureextraction faultdiagnosis residualneuralnetwork attentionmodule
机标分类号:TP391.41TP24O211.61
在线出版日期:2023年7月20日
基金项目:国家自然科学基金,吉林省自然科学基金基于改进残差网络的锂离子电池故障诊断[
期刊论文] 电池--2023, 53(3)段双明 徐超针对残差网络(ResNet)对特征提取准确率低和拟合度不够的问题,提出一种基于改进残差网络的锂离子电池故障诊断方法.首先,利用Simulink对电池容量变小、内阻变大、充电不足和自放电大等4种故障进行故障模拟,得到故障电压...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文
基于改进残差网络的锂离子电池故障诊断 Fault diagnosis of Li-ion battery based on improved residual network
基于改进残差网络的锂离子电池故障诊断.pdf
- 文件大小:
- 1.98 MB
- 下载次数:
- 60
-
高速下载
|