文档名:基于计算机视觉的轨道交通站内客流识别与预测
摘要:轨道交通的短时客流预测通常以车站为最小单位进行研究,只能从宏观上把握车站间的客流规律,不能有效反映站内各场景的拥挤微观客流.为了对车站内部不同场景的微观客流进行分析和预测,及时采取措施保证站内乘客通行安全,提出基于计算机视觉的端到端精细化短时客流识别与预测模型(Detect-Predict).首先,基于手动拍摄并标注乘客头部的闸机口、楼扶梯口、换乘通道、站台等站内场景的图片数据对YOLOv5算法训练,并通过优化后的通道剪枝对检测模型压缩.其次,使用楼扶梯口场景下固定摄像头拍摄的视频数据,通过YOLOv5以及DeepSORT算法对视频中的目标进行检测并跟踪,实现乘客数量实时统计.最后,将统计的客流数量输入到LSTM算法中进行实时预测,并使用识别的客流数据持续在线训练预测模型,构建端到端的轨道交通站内精细化短时客流识别与预测模型.在拍摄的站内视频数据上进行试验,结果表明采用处理输入视频每秒传输帧数的方法,乘客数量实时统计算法可以满足识别的实时性要求,其精度在测试场景下达到99.4%,整体客流预测模型的RMSE为11.07,MAE为8.02,WMAPE为12.57%.提出的轨道交通站内精细化短时客流识别与预测模型可以实时地对轨道交通车站内部场景的微观客流进行识别并预测,使得轨道交通运营者实时掌握站内各场景未来客流并及时疏导,具有一定的应用前景.
作者:张金雷 陈瑶 杨立兴 李华 阴佳腾Author:ZHANGJinlei CHENYao YANGLixing LIHua YINJiateng
作者单位:北京交通大学轨道交通控制与安全国家重点实验室,北京100044
刊名:铁道科学与工程学报 ISTICPKU
Journal:JournalofRailwayScienceandEngineering
年,卷(期):2023, 20(10)
分类号:U121
关键词:智能交通 客流预测 目标检测 目标跟踪 计算机视觉
Keywords:intelligenttransportation passengerflowprediction objectdetection objecttracking computervision
机标分类号:U231TP311.52U491
在线出版日期:2023年11月22日
基金项目:国家自然科学基金,国家自然科学基金,国家自然科学基金基于计算机视觉的轨道交通站内客流识别与预测[
期刊论文] 铁道科学与工程学报--2023, 20(10)张金雷 陈瑶 杨立兴 李华 阴佳腾轨道交通的短时客流预测通常以车站为最小单位进行研究,只能从宏观上把握车站间的客流规律,不能有效反映站内各场景的拥挤微观客流.为了对车站内部不同场景的微观客流进行分析和预测,及时采取措施保证站内乘客通行安全,...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文
基于计算机视觉的轨道交通站内客流识别与预测 Computer vision-based detection and prediction model for passenger flows inside urban rail transit stations
基于计算机视觉的轨道交通站内客流识别与预测.pdf
- 文件大小:
- 46.28 MB
- 下载次数:
- 60
-
高速下载
|
|