返回列表 发布新帖

基于片段充电数据和DEKFWNNWLSTM的锂电池健康状态实时估计

15 0
admin 发表于 2024-12-14 11:13 | 查看全部 阅读模式

文档名:基于片段充电数据和DEKFWNNWLSTM的锂电池健康状态实时估计
摘要:实时准确地评估电动汽车锂电池健康状态(SOH)对电动汽车的稳定行驶至关重要.因此,该文提出一种基于锂电池日常片段充电数据和双扩展卡尔曼滤波-小波神经网络-小波长短时记忆神经网络(DEKF-WNN-WLSTM)的电池全充时间估计模型,进而提高了片段充电数据评估电池健康状态的准确度.首先,设计双扩展卡尔曼滤波预测-校正算法,分别用来估计片段充电数据对应的全充时间和校正扩展卡尔曼滤波的状态初值,以提高估计的准确性.然后,设计了小波神经网络-小波长短时神经网络来学习扩展卡尔曼滤波递推过程的观测值.最后,通过实验仿真,验证了所提算法在锂电池健康状态实时估算中的准确性和有效性.

Abstract:Asacleantechnologytosolvecarbonemissions,electricvehicleshavebeenwidelyusedinmodernvehicles.Duetoitshighenergydensity,lightweight,longlifeandlowselfdischarge,lithium-ionbatterieshavebecomethemainenergystorageequipmentofelectricvehicles.Realtimeandaccurateevaluationofthestateofhealth(SOH)ofthelithiumbatteriesiscriticaltothestabledrivingofelectricvehicles.However,mosttraditionalSOHforecastmethodsareoffline,whichmakesitdifficulttoobtaintheSOHofthebatteriesinrealtime.Recently,somemethodswerepresentedtoforecasttheSOHoflithium-ionbatteries,butmostofthemsufferedfrominconvenientadjustmentofbatterymodelparametersandaccumulationoferrors.Toaddresstheseissues,thispaperproposesabatteryfullchargingtimeestimationmodelanddualextendedKalmanfilters-waveletneuralnetwork-waveletlongshort-termmemoryneuralnetwork(DEKF-WNN-WLSTM).Bytakingthedailysegmentchargingdataoflithiumbatteriesasinput,topredictthefulltimechargingofthebattery,andthengettheSOHinrealtime.Firstly,basedonthestrongrobustnessofwaveletneuralnetwork(WNN)andtheabilityoflongshorttermmemory(LSTM)toextractthetimeseriesfeaturesofthedata,theneuralnetworkofWNN-WLSTMisdesigned.Secondly,twoWNN-WLSTMnetworksaretrainedwithonefullchargingdataandthreefragmentdataoflithiumbatteries,respectively.Thirdly,areal-timeestimationalgorithmnamedDEKFisconstructed,inwhichthefirstEKFisusedtoestimatethefullchargingtimecorrespondingtothesegmentdata,andthesecondEKFisusedtopredicttheerrorbetweentheestimatedandmeasuredbatteryfullchargingtimeunderthecurrentcycle.ThenthetwotrainednetworksareintegratedintoDEKFtoprovidecorrespondingoutputvaluesforthecyclicrecursionofEKF.Finally,areal-timeSOHestimationmodelbasedondailysegmentchargingdataisdesigned.ThesegmentdatafromconstantcurrentchargingtofullchargingatanytimeisusedastheinputofDEKF-WNN-WLSTM,toestimatethecurrentfullchargingtimeoflithiumbatteries,thencalculatetheSOHofthebatteryatthecurrenttime.Inthisreal-timemodel,theWNN-WLSTMalleviatestheinconvenientadjustmentofbatterymodelparametersproblem,addressesthelong-termdependenceproblem.TheDEKFusesthedailysegmentchargingdataastheinput,whichextendsthepracticalapplicationofthemodel.Simulationresultsontheactualbatterycharginganddischargingdatashowthat,themeanrelativeerrorofthepredictionsfortheentire80cyclesis0.0101,theestimatederrorforthefirst50cyclesiscompletelylessthan2%,andlessthan1%atmosttimes.ThecomparisonbetweenDEKF-WNN-WLSTMandextendedKalmanfilterandGaussianprocessregression(EKF-GPR)showsthat,themeanrelativeerrorofEKF-GPRis0.0176,whichishigherthanDEKF-WNN-WLSTM,especiallyinthe170~180cycles,whichindicatesthatthemodelofDEKF-WNN-WLSTMcanalleviatecertainerrorgrowthwiththeincreaseofcycles.Theproposedmethodhasabetterestimationeffectundertheconditionthatnoartificialfullrechargeoperationisperformedtoupdatetheinitialfullchargingtimevalue.Thefollowingconclusionscanbedrawnfromthesimulationanalysis:(1)TheproposedmethodintegratesWNN-WLSTMneuralnetwork,whichaddresstheproblemsoflong-termdependenceandtheinconvenientadjustmentofbatterymodelparameters.(2)ComparedwithEKF-GPR,theDEKF-WNN-WLSTMnotonlyimprovesthepredictionaccuracy,butalsoalleviatestheerroraccumulation.(3)Theproposedmodelonlyneedsthedailysegmentchargingdata.Inthissense,itispracticalintherealworld.

作者:宋显华  姚全正Author:SongXianhua  YaoQuanzheng
作者单位:哈尔滨理工大学理学院哈尔滨150080
刊名:电工技术学报
Journal:TransactionsofChinaElectrotechnicalSociety
年,卷(期):2024, 39(5)
分类号:TM911
关键词:电池健康状态  片段数据  双扩展卡尔曼滤波  小波神经网络  小波长短时记忆神经网络  
Keywords:Stateofhealth  segmentdata  dualextendedKalmanfilter  waveletneuralnetwork  waveletlongshort-termmemory  
机标分类号:TP274~+.2TP391U445.1
在线出版日期:2024年3月19日
基金项目:黑龙江省自然科学基金联合引导项目,山东省自然科学基金联合基金培育项目基于片段充电数据和DEKF-WNN-WLSTM的锂电池健康状态实时估计[
期刊论文]  电工技术学报--2024, 39(5)宋显华  姚全正实时准确地评估电动汽车锂电池健康状态(SOH)对电动汽车的稳定行驶至关重要.因此,该文提出一种基于锂电池日常片段充电数据和双扩展卡尔曼滤波-小波神经网络-小波长短时记忆神经网络(DEKF-WNN-WLSTM)的电池全充时间估计...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文

        基于片段充电数据和DEKF-WNN-WLSTM的锂电池健康状态实时估计  Real-Time State of Health Estimation for Lithium-Ion Batteries Based on Daily Segment Charging Data and Dual Extended Kalman Filters-Wavelet Neural Network-Wavelet Long Short-Term Memory Neural Network

基于片段充电数据和DEKF-WNN-WLSTM的锂电池健康状态实时估计.pdf
2024-12-14 11:13 上传
文件大小:
1.03 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表