MultiStepwindpowerforecastingmodelUsingLSTMnetworks,SimilarTimeSeriesandLightGBM
MultiStepwindpowerforecastingmodelUsingLSTMnetworks,SimilarTimeSeriesandLightGBM.pdf
Intermittentandfluctuatingwindforcesaredetrimentaltothegrid.Amultivariatemodelwasproposedtoimprovetheaccuracyofwindpowergenerationpredictioninordertoinducesystemoperatorstoreducerisks.Themodelconsistsofthreesteps.First,themeteorologicaldatasuchaswindspeedarepredictedbyLSTMnetworksonthebasisoftraditionaltimeseriesapproaches.Thenamethodofsimilartimeseriesmatchingwithhierarchicalsearchisproposedtohighlightthemainfactorsandsavecomputingtime.Weusesimilardisparityasacriteriontoselectsimilarmeteorologicalseriesandpowerdataastrainingsets.Finally,similardataareinputtedintoLightGBMformodeling,training,andprediction.Industrialdataofthewindpowerplantisexaminedcase.Theresultsareclearlydisplaythattheproposedmethodcaneffectivelypredictwindpowerinthenext6hoursandachievehighprecision,whichhascertainengineeringpracticalvalue.
作者:YukunCaoLiaiGui
作者单位:SchoolofComputerScienceandTechnologyShanghaiUniversityofElectricPower,Shanghai,China
母体文献:2019年上海市“智能计算与智能电网”研究生学术论坛论文集
会议名称:2019年上海市“智能计算与智能电网”研究生学术论坛
会议时间:2019年5月17日
会议地点:上海
主办单位:上海市学位委员会
语种:chi
分类号:
关键词:WindpowerMulti-steppredictionsimilartimeseriesLSTMnetworkLightGBM
在线出版日期:2022年9月21日
基金项目:
相似文献
相关博文
页:
[1]